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ОБОБЩЕННЫЕ МНОГОЗНАЧНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 

Плотников А.В., Скрипник Н.В. 

 В работе рассматриваются обобщенные многозначные дифференциальные уравнения с обобщенной 
производной. Доказаны соответстующие теоремы существования и единственности.  
 
КЛЮЧЕВЫЕ СЛОВА: обобщенные многозначные дифференциальные уравнения, теоремы существования и 
единственности, обобщенная производная. 
 
 

УЗАГАЛЬНЕНІ БАГАТОЗНАЧНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ 

Плотніков А.В., Скрипник Н.В. 

В роботі розглядаються узагальнені багатозначні диференціальні рівняння з узагальненою похідною. 
Доведені відповідні теореми існування та єдиності. 
 
КЛЮЧОВІ СЛОВА: узагальнені багатозначні диференціальні рівняння, теореми існування та єдиності, 
узагальнена похідна. 
 

 
1. Introduction. The concept of derivative for set-
valued mapping was first entered by M. Hukuhara [1]. 
Then the problems of differentiability of fuzzy 
mappings were considered by T. F. Bridgland [2], J.N. 
Tyurin [3], H.T. Banks and M.Q. Jacobs [4], A.V. 
Plotnikov [5, 6], A.N. Vityuk [7], B. Bede and S.G. 
Gal [8], A.V. Plotnikov and N.V. Skripnik [9]. The 
properties of these derivatives were considered in [10–
18]. 

F.S. de Blasi and F. Iervolino begun studying of 
set-valued differential equations (SDEs) in semilinear 
metric spaces [12,19–21]. Now it developed in the 
theory of SDEs as an independent discipline. The 
properties of solutions, the impulsive SDEs, control 
systems and asymptotic methods for SDEs were 
considered [5,6,9–11,16–24]. On the other hand, SDEs 
are useful in other areas of mathematics. For example, 
SDEs are used as an auxiliary tool to prove the 
existence results for differential inclusions. Also, one 
can employ SDEs in the investigation of fuzzy 
differential equations. Moreover, SDEs are a natural 
generalization of usual ordinary differential equations 
in finite (or infinite) dimensional Banach spaces [19]. 

In [9] a new concept of a derivative of a set-valued 
mapping that generalizes the concept of Hukuhara 

derivative was entered and a new type of a set-valued 
differential equation such that the diameter of its 
solution can whether increase or decrease (for example, 
to be periodic) was considered. In the ideological sense 
this definition of the derivative is close to the 
definitions proposed in [5,6,8]. 

In this paper the generalized set-valued differential 
equations with generalized derivative are considered 
and the existence and uniqueness theorems are proved. 

2. Generalized differential equations with 

generalized derivative. Let  be a space of 

all nonempty convex closed sets of  with Hausdorff 
metric 

nconv(R )
nR

r rh(A, B) min{r 0:A B S (0), B A S (0)}      ,  

where , . nA, B conv(R ) n
rS (0) {s R :|| s || r}  

Definition 1 [1]. Let . A set 

 such that  is called a 

Hukuhara difference of the sets X and Y and is denoted 

by 

nX, Y conv(R )

X Y Z nZ conv(R )

h
X Y . 
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From Rådström's Embedding Lemma [25] it 
follows that if this difference exists, then it is unique. 

If on the interval 1 2[ , ]   the function (t) 0  , 

then we have 

1

t

t) F (s


1 1( )X( ,X(s))ds X   , i.e. 

1

t

1 1F (s,

First consider a differential equation with the 
generalized derivative that is similar to a differential 
equation with the Hukuhara derivative, i.e. 

h
X(t) X( )



  X(s))ds  and  

decreases. 

diamX(t)DX F(t, X) , ,   (1) 0X(t ) X

where  is the generalized derivative of a set-valued 

mapping  [9], 

 is a set-valued 

mapping, . 

DX

,T] c

n
0X :[t ,T] conv(R )

n nR ) conv(R ) 
nonv(R )

0F :[t onv(

0X c

If on the interval 1 2[ , ]   the function (t) 0  , 

then we have 1)X(t) X( . 

So we can enter the other equivalent definition of a 
solution of equation (2). Definition 2. A set-valued mapping 

 is said to be a solution of 

differential equation (1) if it is absolutely continuous 
and satisfies (1) almost everywhere on . 

n
0X :[t ,T] conv(R )

0[t ,T]

Definition 4. A set-valued mapping 

 is called a solution of 

differential equation (2) if it is absolutely continuous, 
satisfies (2) almost everywhere on  and 

n
0X :[t ,T] conv(R )

increases

diamX(t) is cons tan

decreases




0[t ,T]

 
if (t) 0,

t if t 0,

if (t) 0.






 






 

Remark 1. Unlike the case of differential 
equations with Hukuhara derivative, if a differential 
equation with generalized derivative (1) has a solution 
then there exists an infinite number of solutions 
irrespective of the conditions on the right-hand side of 
the equation (see [9]). Remark 2. It is obvious that the mappings 

,  define only the speed of changing of 

the mapping X(
1F (t, X) 2F (t,X)

)  in case of its "decrease"( ) or 

"increase"( ) and function 
1F (t, X)

2F (t,X) ( )   defines what 

will occur to X( )  ["decrease" or "increase"]. If 

(t) 0  irrespective of  and  the 

mapping 
1F (t, X(t)) 2F (t,X(t))

X( )  will be constant. 

Therefore we will consider the other differential 
equation with the generalized derivative: 

1 2

0 0

h
DX(t) ( (t))F (t,X(t)) ( (t))F (t,X(t)),

X(t ) X ,

    


 (2) 

where ; ; 

; 

 are set-valued 

mappings; 

0t [t ,T]
n(R )

] conv(R

0:[t ,T]

n
0X :[t ,T] conv(R )

nonv(R )

0X conv

1 2 0F ,F :[t ,T n ) c 
R 

1,
( )


 




 


 is a continuous function; 

function  
0,

0 0


 .

Let   be a space of all nonempty 

strictly convex closed sets of  and all element of 

 [27]. 

nCC(R ) (n 2)
nR

nR
The following theorem of existence of the solution 

of equation (2) for case  holds: nCC(R )

Theorem 1. Let the set-valued mappings , 

  in the domain  

1F (t,X)

2F (t,X) n: R CC(R ) CC(R ) 
Definition 3. A set-valued mapping 

 is called a solution of 

differential equation (2) if it is continuous and on any 
subinterval 

n
0X :[t ,T] conv(R )

1 2[ , ] [t0 ,T]   , where function (t)  of 

constant signs, satisfies the integral equation  

n

n
0 0 0Q {(t, X) R CC(R ):t [t , t a], h(X, X ) b}     

 
satisfy the following conditions:  

i) for any fixed  the set-valued mappings X

1F ( ,X) , 2F ( , X)  are measurable; 

1

1

t

1 1

t

2

X(t) ( (s))F (s,X(s))ds X( )

( (s))F (s,X(s))ds





  

 

  









. 
ii) for almost every fixed  the set-valued 

mappings 
t

1F (t, ) , 2F (t, )  are continuous; 

iii) 1 1| F (t, X) | m (t) , , where 

, 
2| F (t, X) | m (t) 2

1m ( )  are summable on ; 0 0t [t , t a] 
If on the interval 1 2[ , ]   the function (t) 0 

1 2, ]

, 

then  satisfies the integral equation 

 for 

X(t)

X( ) 

1

t

1 2X(t) F (s,

 X(s))ds

iv) (t)  is continuous and has the finite number of 

intervals where sign( (t)) 1   ; 

v) 0int X   . 
t [   and 

 increases. diamX(t)

Then there exists a solution of equation (2) defined 
on the interval 0 0t [t , t d]  , where  satisfies 

the conditions 

d 0

a) d a ;  
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(t d) bb) i 0   , where , 

; 
0

t

i i
t

(t) m (s)ds  
i 1, 2

c) 

0 0

1
[t ,t d]

m (s)ds
2







 , 

where 0 0
|| || 1
min | C(X , ) C(X , ) |


  


 

n n... x )

 , 

1 1
x X

C(X, ) max(x  


0 0 0 0[t , t d] [t , t

  

d]: (t) 0

, 

  

0 0t [t , t d]

   for 

  . 

Proof. Let us consider some cases. 
1) (t) 0 

H 2D X F (

 for . Then equation (2) is the 

ordinary differential equation with Hukuhara derivative  
  

0 0t [t , t a] 

X), 0 0X(t ) X .t,

Therefore, using [17] we get that equation (2) has a 
solution  defined on , where d  

satisfies the condition 

X(t) 0 0[t , t d]
d min{a, } , 

. 
0

0

t

2
t

m ( b


 s)ds 

2) (t) 0 

HD X {0}

 for . Then equation (2) is the 

ordinary differential equation with Hukuhara derivative 
,  and therefore, 

0 0t [t , t a] 

0 0X(t ) X 0X(t) X  is 

solution of (2) on . 0 0[t , t a]
3) (t) 0   for . Then equation (2) is the 

equation with the generalized derivative 
0 0t [t , t a] 

1
h

DX(t) F (t, X(t)) {0} ,   (3) 0X(t ) X . 0

 
According to Definition 3 consider the following 

integral equation  

0

t

0 1
t

h
X(t) X F (s,X(s))ds       (4) 

 
for  and prove the existence of solution 

on some interval . 
0 0t [t , t a] 

[t0 0, t d]
   3a) As  for , then 

, where 

. 

1| F (t, X) | m (t)

1m (t) (0)

nR :|| x a || r} 

1

a

)

(t,X) Q

1F (t,X) S

rS (a) {x 

So . t
1

10 0
t0

t t

1 m (s)
m (s)dst t

F (s, X)ds S (0)ds S (0) 


 

Define by . It is obviously, that 

if , then 

. 

t

1
t0

m (s)ds
S(t) S (0)



0 1 2 0t t t t   

0 1 2S(t ) S(t ) S(t  0{0} S(t ) a)  

As  and , then there 

exists  such that the set  can be embedded 

in the set  for all 

n
0X CC(R

1d 0
0int X  

S(t)

0X 0 0 1t [t , t d ]   (i.e. there exists 

(t)  such that 0(t) XS(t)   ) and is not embedded 

for . And, it is obviously, that  can be 

found out from the equation 

0 d  1t t 1d

0 1

0

t d

1
t

m (s)ds
2






0 0 1

{(t,X) R CC

, t d ],h(X,X

 



n

0

(R ):

) b}

. 

Therefore, for all  

1Q

: t [t

 (t,X)

  

0X

(t,X)

 

the set  is embedded in the set . 

0

t

t
 1F (s,

1F (t,

X)ds

X)   3b) As  for all nCC(R ) 1Q , then 

 for all  [27]. 

Therefore, as  and the set S(  can be 

embedded in the set  for all , then 

the Hukuhara difference 

0

t

1
t

F (t nCC(R

0X 

, X)ds ) (t

nCC(R )

0X t [

,X) Q

t)

0 0t , t 1d ]

0

t

0 1
t

h
X F (s, X)ds  exists for 

all 1Q(t,X)  [27]. 

   3c) Let us find  such that 2d 0
0 2

0

t d

1
t

m (


 s)ds b  

and consider 1 2min{a,d ,d }d  . 

   3d) Choose any natural . Sequentially on the 

intervals 

k

0t i t t0 (i 1)      , 
d

k
  , 

i 0,..., k 1   let us build the successive 
approximations of the solution 

k
0X (t) X  for ,   0t t   0t

0

t
k k

0 1
t

F (s,X (s )) 
kX (t) X

h
XX (t

k

)

N

ds t [t

k n(t) CC(R )

 for . 0 0, t d] 

By 3b)  exist and  for all 

 and  0 0t [t , t d] 
kX (t)

. Also by conditions i) and ii) 

of the theorem  is continuous on 0 0[t , t d]  for 

all k N . 
Besides  

0

t
k k

1F (s,X (s ))ds,0 0 0
t

h
h X X
 
 h(X (t),X )   
 
 

  

 

0

t

1
t

h(F (s, X

0

t

t

m (s)ds

k (s )),{0}) 

1 1 0(t d) b    . 
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Remark 3. Also it is possible to prove the similar 

results if  be a space of all nonempty M- 

strongly convex closed sets of  and all element of 

 [29]. 

nCC(R )
nR

nR

Hence, the sequence of the set-valued mappings 

 in uniformly bounded: 

. 

k
k 1{X (t)}

kh(X (t),{0} 0) h(X ,{0}) b 

Let us show that the set-valued mappings  

are equicontinuous. For any 

kX (t)

   0 0t , t d, [ 3. Conclusions. In this paper the concept of 
generalized differentiability (proposed in [9]) for set-
valued mappings is used. The new type of the set-
valued differential equation – generalized set 
differential equations – is considered. The existence 
and uniqueness theorems for set-valued differential 
equations with generalized derivative are proved. 

]     

and any natural  the inequality holds  k

k kh(X ( ), X ( ))    

0 0

k k
0 1 0 1

t t

h h
h X F (s,X (s ))ds, X F (s, X (s ))ds





 

 

 

k
1 1 1h(F (s, X (s )),{0})ds m (s)ds ( ) ( )

 

 

       



 


1 

The function 1(t)  is absolutely continuous on 

 as the integral of the summable function 

with a variable top limit. Hence, for any 
0 0[t , t d]

0 
( ) 0

 there 
exists    , such that for all  

0

 such that 

     k kh(X ( ),X ( )) the inequality     is 

fair, the sequence k
k 1{X (t)}  is equicontinuous. 
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