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OBOBIIEHHBIE MHOT'O3HAYHBIE TUO®EPEHIIUAJTBHBIE YPABHEHUA

IThomnukoe A.B., Ckpunnuk H.B.

B pabGote paccmarpuBaroTcs 00O0OIIEHHBIC MHOTO3HAYHBIC TU(PQEpEHIMANTBHbIC YpaBHEHHUS C OO0OOMICHHOM
MPOU3BOIHOMU. JJoKa3aHBI COOTBETCTYIOIIUE TSOPEMBI CYIIIECTBOBAHUS M €IMHCTBCHHOCTH.

KJIFOYEBBIE CJIOBA: 06001meHHble MHOTO3HAaYHBIE An(depeHInaabHble YPaBHEHNS, TEOPEMBI CYIIECTBOBAHUS H

CIANHCTBCHHOCTH, 000 6H.IGHHaH IPpOU3BOAHAA.

Y3ATAJIBHEHI BATATO3HAYHI JU®EPEHIIAJIBHI PIBHAHHSA

IInomnikoe A.B., Ckpunuuk H.B.

B po06oTi po3risinaroThes y3arajabHeHi 0araro3HauHi nud)epeHIliaibHi PIBHIHHS 3 y3araJbHEHOO MOXIIHOIO.

JloBeneHi BiAMOBIIHI TEOpEMH iCHYBaHHS Ta €JMHOCTI.

KJIFOYOBI CJIOBA: y3aranpHeHi Oarato3HauHi JudepeHIianbHi piBHSAHHS, TEOpEeMH ICHYBaHHS Ta €IMHOCTI,

y3arajJbHCHa HOXiHHa.

1. Introduction. The concept of derivative for set-
valued mapping was first entered by M. Hukuhara [1].
Then the problems of differentiability of fuzzy
mappings were considered by T. F. Bridgland [2], J.N.
Tyurin [3], H.T. Banks and M.Q. Jacobs [4], A.V.
Plotnikov [5, 6], A.N. Vityuk [7], B. Bede and S.G.
Gal [8], A.V. Plotnikov and N.V. Skripnik [9]. The
properties of these derivatives were considered in [10—
18].

F.S. de Blasi and F. Iervolino begun studying of
set-valued differential equations (SDEs) in semilinear
metric spaces [12,19-21]. Now it developed in the
theory of SDEs as an independent discipline. The
properties of solutions, the impulsive SDEs, control
systems and asymptotic methods for SDEs were
considered [5,6,9-11,16-24]. On the other hand, SDEs
are useful in other areas of mathematics. For example,
SDEs are used as an auxiliary tool to prove the
existence results for differential inclusions. Also, one
can employ SDEs in the investigation of fuzzy
differential equations. Moreover, SDEs are a natural
generalization of usual ordinary differential equations
in finite (or infinite) dimensional Banach spaces [19].

In [9] a new concept of a derivative of a set-valued
mapping that generalizes the concept of Hukuhara
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derivative was entered and a new type of a set-valued
differential equation such that the diameter of its
solution can whether increase or decrease (for example,
to be periodic) was considered. In the ideological sense
this definition of the derivative is close to the
definitions proposed in [5,6,8].

In this paper the generalized set-valued differential
equations with generalized derivative are considered
and the existence and uniqueness theorems are proved.

2. Generalized differential equations with

generalized derivative. Let conv(R") be a space of

all nonempty convex closed sets of R" with Hausdorff
metric
h(A,B)=min{r 20:A < B+S,(0), Bc A+S,(0)},

where A,Beconv(R"), S, (0)={seR":||s|<r}.
Definition 1 [1]. Let X,Y econv(R"). A set

Zeconv(R") such that X=Y+Z is called a

Hukuhara difference of the sets X and Y and is denoted

by XLY.
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From Radstrom's Embedding Lemma [25] it
follows that if this difference exists, then it is unique.

First consider a differential equation with the
generalized derivative that is similar to a differential

equation with the Hukuhara derivative, i.e.
DX = F(t,X), X(ty) = Xq., (1)

where DX is the generalized derivative of a set-valued

mapping X:[tg,T]—> conv(R™) [9],
F:[tg,T]xconv(R") — conv(R") is a set-valued
mapping, X, € conv(R").

Definition 2. A  set-valued  mapping

X:[tg,T]—> conv(R") is said to be a solution of

differential equation (1) if it is absolutely continuous
and satisfies (1) almost everywhere on [ty,T].

Remark 1. Unlike the case of differential
equations with Hukuhara derivative, if a differential
equation with generalized derivative (1) has a solution
then there exists an infinite number of solutions
irrespective of the conditions on the right-hand side of
the equation (see [9]).

Therefore we will consider the other differential
equation with the generalized derivative:

DX(t)E‘P(—(/’(t))E (t,X(1)) = D(p(t)F, (t,X(1)),
X(tg) =X,

2

where te[ty,T]; X:[tg,T]—> conv(R");

X, € conv(R");
F.F, :[tg,T]xconv(R") — conv(R") are set-valued
mappings; ¢:[ty,T]—> R is a continuous function;
1, ¢>0,
0 ¢<0.
Definition 3. A
X:[tg,T]—> conv(R") is
differential equation (2) if it is continuous and on any
subinterval [7),7,][ty,T], where function ¢(t) of

function @(p) = {

set-valued ~ mapping

called a solution of

constant signs, satisfies the integral equation

t
X(6)+ [ @(—p(s))Fy (s, X(s))ds = X(7)) +

7

t
+ [ @(p(s)Fy(5,X(s))ds
0
If on the interval [7),7,] the function ¢(t)>0,
then  X(t) satisfies  the integral  equation
t
X(t) =X(Tl)+IF2 (s,X(s))ds for te[r,7,] and

7

diamX(t) increases.
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If on the interval [rj,7,] the function ¢(t) <0,

t
then we have X(t)+ j Fy (s, X(s))ds = X(1}), i.e.

7

t
X(t) = X(rl)L j F(s,X(s))ds  and

T

diamX(t)

decreases.

If on the interval [rj,7,] the function ¢(t) <0,
then we have X(t) = X(7;).

So we can enter the other equivalent definition of a
solution of equation (2).

Definition 4. A
X:[ty,T]— conv(R") is
differential equation (2) if it is absolutely continuous,
satisfies (2) almost everywhere on [ty;,T] and

set-valued ~ mapping

called a solution of

increases if ¢(t) >0,
diamX(t) =4 is constant if ¢(t)=0,
decreases if @(t) <0.

Remark 2. It is obvious that the mappings
F (t,X), E,(t,X) define only the speed of changing of

the mapping X(-) in case of its "decrease"( F (t,X) ) or
"increase"( F,(t,X)) and function ¢(-) defines what
will occur to X(-) ["decrease" or "increase"]. If
o(t) < Oirrespective of F (t,X(t)) and F,(t,X(t)) the
mapping X(-) will be constant.

Let CC(R™) (n>2) be a space of all nonempty

strictly convex closed sets of R" and all element of
R" [27].

The following theorem of existence of the solution
of equation (2) for case CC(R") holds:

Theorem 1. Let the set-valued mappings F (t,X),
F(t,X) :RxCC(R")— CC(R") in the domain
Q={(t,X) e RxCC(R"):t e[ty,to +a], h(X,X() < b}

satisfy the following conditions:
i) for any fixed X the set-valued mappings
F(,X), K (,X) are measurable;

ii) for almost every fixed t the set-valued
mappings F (t,"), B (t,-) are continuous;

i) |Ft,X)|<m(t), |E({t,X)|<m,(t), where

, my(-) are summable on t e[ty,ty+a];

iv) @(t) is continuous and has the finite number of
intervals where sign(¢(t)) ==x1;

v) intX,=J.

Then there exists a solution of equation (2) defined
on the interval te(ty,tg+d], where d>0 satisfies

the conditions
a)d<a;
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t
b)  $(tg+d)<b, where ¢l(t):_[mi(s)ds,

to

i=12;

c) I my(s)ds < g

Hlty,to+d]
where 0= min | C(X:9)+ CC, )|
y||=1
CX,y)=max(xyy +...+Xp¥p),
xeX

ﬂ[to,to +d]C[t0,t0 +d]2§0(t)<0 fOl”

te ylty,to+d].

Proof. Let us consider some cases.
1) o(t)>0 for te[ty,ty +a]. Then equation (2) is the
ordinary differential equation with Hukuhara derivative
DuX =FE(t,X), X(tg)=X,.

Therefore, using [17] we get that equation (2) has a
solution X(t) defined on [ty,tg+d], where d

satisfies the condition d =min{a,y},
toty

J' m,(s)ds=b.

to

2) p(t)=0 for te[ty,ty+a]. Then equation (2) is the
ordinary differential equation with Hukuhara derivative
DX ={0}, X(ty)=X( and therefore, X(t)=X, is
solution of (2) on [tg,ty; +a].

3) o(t) <0 for te[ty,ty +a]. Then equation (2) is the
equation with the generalized derivative

DX(t)£F1(t,X(t)) =10}, X(tp) = Xo. 3

According to Definition 3 consider the following
integral equation

t
X(0)=Xo 2 [ Fs.X()ds o)

to

for te[ty,ty+a] and prove the existence of solution
on some interval [tg,ty +d].

3a) As |F(t,X)|<m(t) for (t,X)eQ, then
F(t,X)c Sml(t) 0), where

S;(@)={xeR"||x—al|<r1}.

t t
So j Fy(s,X)ds j Sy (5)(0)ds =S, (0).
j m;(s)ds
to
Define by S(t) =S, (0). It is obviously, that
J. m; (s)ds
to
if th <t <ty <t0+a, then
{0} =S(tg) = S(t;) = S(ty) = S(ty +a).
As Xy eCC(R") and intX, =, then there
exists d; >0 such that the set S(t) can be embedded

to to

in the set X, for all te[ty,ty+d;] (i.e. there exists
£ (t) such that S(t)+¢(t) = X ) and is not embedded
for t>ty+d;. And, it is obviously, that d; can be
to+d;
found out from the equation I my(s)ds = g .
ty
Therefore, for all
(t,X)eQ; ={(t,X) e RxCC(R"):
(tetg,tg +di,h(X,Xy) < b}

t
the set IFI (s,X)ds is embedded in the set X .
to

3b) As F(t,X)e CC(R") for all (t,X)e€Qy, then

t
.[Fl (t,X)dse CC(R") for all (t,X)eQ [27].
ty

Therefore, as X, € CC(R") and the set S(t) can be
embedded in the set X for all te[ty,ty+d;], then

t
the Hukuhara difference XoL _[ F (s,X)ds exists for

to
all (t,X) e Q, [27].
to+d,
3¢) Let us find dy >0 such that j m,(s)ds =b
to

and consider d =min{a,d;,d,}.

3d) Choose any natural k. Sequentially on the

intervals tg +iA<t<ty+(i+D4, A:%’

1=0,..., k-1 let us build the successive
approximations of the solution

XK(t) =X, for tg—A<t<t,,

t
XK (1) = X L [ Fis, X" (s—a)ds for tetg,tg+d].
to
By 3b) XX(t) exist and X¥(t)e CC(R™) for all
ke N and te[ty,ty +d]. Also by conditions 1) and ii)

of the theorem XX (t) is continuous on [ty,ty+d] for

all ke N.
Besides

t
h(xX*(1),Xy)=h XOLJF](S,XI‘(S—A))ds,XO <

to

t
< [ h(F s, X" (s - 2), {0})

to

t
< J-ml(s)ds <h(tg+d)<b.

to
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Hence, the sequence of the set-valued mappings
X O in bounded:
h(XX(1),{0}) <h(Xg,{0}) +b.

uniformly

Let us show that the set-valued mappings xk (1)
are equicontinuous. For any a < S a,f €[ty,ty+d]
and any natural k the inequality holds

h(x* (@), X*(B)) =

h ¢ k h f k
h| X, — j F(s, X (s—A))ds,Xo—jFl(s,X (s—A))ds
to to

B o}
< [0(F (5, X" (s = )),{0})ds < [ my (8)ds = ¢y (B)— (@)

The function ¢ (t) is absolutely continuous on
[tg,to +d] as the integral of the summable function
with a variable top limit. Hence, for any ¢ >0 there

exists o(g) >0 such that for all «, f such that

0< f—a < the inequality h(Xk (0:),Xk (B)<e is
fair, the sequence {Xk (t)}r-; is equicontinuous.

According to Askoli theorem [28] we can choose a

uniformly converging subsequence of the sequence
{Xk (O)}p;. Its limit is a continuous set-valued
mapping that we will denote by X(t). As

h(XX (s — 4),X(s)) < h(XX (s - 4), XX (s)) +
+h(XX(s), X(s))

and the first summand is less than & for A= % <0 in

view of the equicontinuity of the set-valued mappings
{Xk (t)}p=;, then along the chosen subsequence
{Xk (s— )}z, converges to X(t). Owing to the
theorem conditions in (3) it is possible to pass to the

limit under the sign of the integral. We receive that the
set-valued mapping X(t) satisfies equation (4) and

X(tg) =X, 1.e. X(t) is the solution of (3) on the
interval [ty,ty +d].

4) In case when the function ¢(t) changes sign on
the interval [t(,t, +a], the existence of the solution is
proved combining cases 1)-3). The theorem is proved.

Theorem 2. Let the set-valued mappings F (t,X),

E (t,X) RxCC(R")— CC(R")  satisfy

conditions of Theorem 1 and satisfy the conditions
h(F (t,X"),F (t,X")) <L;h(X", X"),
h(E (t, X", E (t,X") < L,h(X,X")

the

for all (t,X"),(t,X") € Q. Then there exists the unique
solution of equation (2) defined on the interval
telty,to +d].
The proof is similar to [17,24].
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Remark 3. Also it is possible to prove the similar

results if CC(R") be a space of all nonempty M-

strongly convex closed sets of R" and all element of
R" [29].

3. Conclusions. In this paper the concept of
generalized differentiability (proposed in [9]) for set-
valued mappings is used. The new type of the set-
valued differential equation — generalized set
differential equations — is considered. The existence
and uniqueness theorems for set-valued differential
equations with generalized derivative are proved.
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