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In [1] V.A. Rvachev introduced the function 
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This function has various applications in such branches 
of mathematics as approximation theory [1, 2], wavelet 
theory [3] and mathematical modeling [4, 5].  Therefore 
the asymptotic behavior of  as  is of 

interest. 
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In this paper we construct a generalization of the 
function  and consider the problem of its 

asymptotics. 
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which is a solution with a compact support of the 
functional differential equation 
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The function  was introduced by V.A. 

Rvachev and G.A. Starets in [6]. 
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where . It is obvious that this function is a 

generalization of the function . Hence we will 

call it the generalized Fup-function. 
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So there exists an asymptote of generalized Fup-

function and the first term of its asymptotic expansion is 
obtained. 

Note that if nN 2(2s)
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 then  equals to the 

function  which was introduced in [7]. 
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Functions  and  have “good” 

approximation properties.  
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extremal for approximating  in the norm of 

2L [ , ]   [2]. It was shown in [7] that spaces of linear 

combinations of shifts of the function  are 

asymptotically extremal for approximating functions 
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Moreover,  and  are infinitely 

smooth and locally supported. Therefore these functions 
are convenient to use from the practical point of view 
and theorem 1 provides their usage for large .   
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Introduction. Although, system identification 
methods utilizing experimental data in a form of 
discrete-time series are widely used nowadays, there 
still not exists a well-developed universally recognized 
structural identification method neither for nonlinear 
dynamical systems nor for linear ones. 
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Identification approach using continued fractions 
which was proposed in [1] has many advantages such as 
possibility of simultaneous determination of both 
structure and parameters of a model, possibility of 
identification with different input signals in open-loop 
systems as well as in closed-loop systems, relative 
simplicity of algorithm realization with contemporary 
microprocessor devices… The approach shows perfect 
results in noise-free modeling but in real life tasks 
measurement noise and perturbations may lead to 
significant increase of model order that in many cases 
can make it impossible to identify object [1–4]. 

In this paper we propose a new approach to the SP-
identification of time-delay systems that makes it 
possible to identify low-order models from noised 
measurements. 
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Main result. Assuming sampling time been 
constant, discrete-time experimental data can be 
represented in a form of formal Laurent power series: 
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Then, on the basis of (1) a continued fraction can be 
formed. In this paper we’ll use Rutishauser method of 
representing analytic functions by continued fractions 
(continued fractions are written in Rodgers notation): 

(0) -1 (0) -1 (0) -1 (0) -1
0 1 1 2 2c q z e z q z e z

f (z) ...
1 1 1 1 1


    

,(2) 

where ; ; ; ; 

,  – sequences calculated with formulas: 
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To avoid zero division in (2) sequence k k 0{c }   is 

shifted to a first nonzero element. The first nonzero 
element and resulting continued fraction should be 
multiplied by  according to the delay theorem, 
where d is a shift of a lattice function. 

dz

The determination of continued fraction coefficients 
can be realized by calculation of an identification matrix 
as it was realized in [2]. 

To determine low order model we have to formulate 
functional minimization problem with stability 
restrictions. 

Let characteristic polynomial of a discrete transfer 
function is: 
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Then stability restrictions can be formulated in a 
form: 
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System (3) should be supplemented with steady-
state equation of model’s transient process: 
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Having expressed (3) and (4) in terms of {c} 
determination of low order model can be realized 
through minimization of functional (5) taking into 
account restrictions (3,4). 
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where {c} – experimental data, { c } – variable 
parameters. 

Then { c } is used for forming continued fraction 
that’ll give us discrete transfer function of a model. 
Model in a form of continuous transfer function can be 
derived with matched Z-transform as it was realized in 
[2, 3]. 
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Consider a set of arithmetic functions  , a set of 
multiplicative prime-independent functions  and 

operator , which is defined as 

 The behaviour of  for various 

special cases of f  has been widely studied, starting 
with the pioneering paper of Subbarao [1] on 
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Our first aim is to investigate asymptotic properties 
of multiple applications of  on arithmetic functions. 
Our second aim is to study  over squarefull and 
cubefull numbers. 
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