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Integral equations are encountered in various fields 
of science and in numerous applications, including 
elasticity, plasticity, heat and mass transfer, oscillation 
theory, fluid dynamics, filtration theory, electrostatics, 
electrodynamics, biomechanics, game theory, control, 
queuing theory, electrical engineering, economics, and 
medicine. In this report we consider fuzzy integral 
equation and prove the existence and uniqueness 
theorem, the theorem of continuous dependence on the 
right-hand side and initial fuzzy set and justify the 
possibility of using the averaging method.  
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Consider the fuzzy integral equation 

 0
0

( ) = ( , , ( )) ,
t

x t x f t s x s ds   (3) 

where t R  is time, : , nx R G G E    is a 

phase variable, 0>  is a small parameter. 
Along with equation (3) consider the following 

averaged integral equation 
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The following theorem that establishes the 
proximity of solutions of equations (3) and (4) on a 
finite interval holds: 
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where )(x  and )(x  are solutions of the equations (3) 

and (4).  


