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Wave motions of a magnetic fluid are of great interest in science and are the 

subject of intense research. A strong factor influencing the stability is the 
modulation of temporal parameters of the equilibrium or fluid flow. Deserves 
special attention the situation where a change of parameters of the system is 
periodic in nature and can appear a phenomenon of parametric resonance. 
Periodic modulation of parameters is of great interest in practice in view of the 
prevalence of periodic random factors (temperature fluctuations, mechanical 
vibrations, sound and electromagnetic fields). 

Interest to the problem of the stability of surface of the fluid in alternating 
fields is also related to the fact that in many hydrodynamic systems that are 
unstable in the absence of modulation, dynamic stabilization of the equilibrium is 
possible by using of parametric action. Thus, with the help of specially given 
modulation can be effectively controlled hydrodynamic stability. 

The first investigations of movements of the surface waves belong to 
Faraday [1]. He studied the structure of wave motions. The result depended on 
the composition and depth of the liquid, the oscillation amplitude and frequency. 
Particularly in 1831 he found experimentally, that by supporting the forced 
oscillation frequency equal to the half of natural frequency of surface waves, a 
phenomenon known today as parametric resonance appears. 

The first theory of this phenomenon was developed by T. Benjamin and      
F. Ursel [2] and independently by N. N. Moiseev [3, 4]. They showed that the 
expression for the displacement of surface of an ideal fluid in the linear 
approximation is reduced to the Mathieu equation, and therefore resonance 
frequencies exist [5], in which the surface is unstable. The current state of the 
problem is described by D. V. Lyubimov in the monograph [6]. K. Kumar and  
L. S. Tackerman [7] considered the problem of stability of two immiscible 
Newtonian viscous fluids contained in a vessel and subjected to periodic 
fluctuations. The problem of the stability of the interface viscous liquids of any 
viscosity was finally solved by K. Kumar [8]. 

During the 1960s were created magnetic fluids (ferrofluids) [9], which are 
artificial stable colloidal suspension of single-domain magnetic particles in a 
liquid carrier. The properties of magnetic fluids are mostly determined by the 
thermal Brownian motion of suspended particles and the fact that each single-
domain particle has a permanent magnetization. The main idea is the ability to 
directly control the position of the ferrofluid and control its behavior using a 
magnetic field. This justifies the extensive studies of magnetic fluids, their 
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peculiar physical and chemical properties, their hydrodynamic and thermal 
convection behavior [10]. 

The first investigations of the stability of the free surface of ferrofluid in the 
magnetic field belong to R. Rosensweig [11]. He found that the homogeneous 
stationary magnetic field, applied perpendicular to a flat layer of magnetic fluid, 
is the cause of spontaneous formation on the surface of the ordered structure of 
the sharp peaks when the magnitude of the field exceeds a critical value 
(Rosensweig instability). Then M. P. Perry and T. B. Jones [12] showed that the 
instability of a plane layer of ferrofluid can be excited by the tangential to the 
free surface time-periodic magnetic field. The influence of the time-only 
oscillating tangential magnetic field on the isothermal layer of ferrofluid was 
also examined by A. Сebers [13]. He analyzed the stability of the free surface of 
almost inviscid semi-infinite magnetic fluid, which is subjected to such field.  

H. W. Muller [14] showed that the standing waves on the surface of the 
magnetic fluid can be excited in the normal steady-state magnetic field at the 
vertical vibration of the container, taking into account the effects of viscous 
dissipation and finite depth of fluid. He found that the mechanism of parametric 
excitation may cause a delay of Rosensweig instability. Also was examined the 
situation where a wave of Faraday and Rosensweig interact. V. Mekhonoshin 
and A. Lange [15] made a linear stability analysis of unlimited horizontal layer 
of magnetic fluid of arbitrary depth, which is subjected to vertical vibrations in a 
horizontal applied stationary magnetic field. M. Hennenberg, S. Slavtchev and  
B. Weyssow [16] have continued to develop the formulation of the linear 
stability problem for an isothermal layer of magnetic fluid exposed to a magnetic 
field, which contains a constant and an oscillating part. Two important cases 
were considered: the first one corresponding to the almost inviscid fluid, the 
second one taking the validity of the lubrication approximation. 

In this paper we study the influence of mechanical vibration, time-dependent 
magnetic field and temperature fluctuations on the stability of the free surface of 
an ideal nonlinear magnetizable fluid. Thus, this problem is a generalization of 
the stability problem of the free surface in a constant magnetic field [11, 14, 15] 
to the case of unsteady arbitrarily oriented homogeneous field and most general 
isotropic law of magnetization. Also this problem is a generalization of problems 
[12, 13, 16] to the case of non-isothermal fluid flows. 
1. Problem formulation. Let us consider a horizontal ferrofluid layer of infinite 
lateral extent and width (2), on top of which is located a nonmagnetic medium of 
lower density, such as air (1) (fig.1). Ferrofluid is considered ideal, non-
conducting, incompressible and homogeneous. It is assumed that the nonlinear 
magnetizable fluid is in arbitrarily oriented to its free surface homogeneous time-
varying magnetic field. We consider the case of the most general isotropic law of 
the magnetization. 

 It is assumed that z = ζ (x, y, t) is the interface between two semi-infinite 
fluid layers, and in a state of relative balance z = 0 is the equation of equilibrium 
of the interface. 



 
Fig.1. Schema of the problem under consideration.  , 
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we need to find the solution of equations: 
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The boundary conditions for the problem of parametric stability of the free 
surface include: 

1. kinematic and dynamic conditions 
z = ζ (x, y, t):   nV 0                                                                 (2) 
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2. conditions for the electromagnetic field 
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3. boundary conditions at infinity  
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1where  is a jump of the corresponding quantities; i – index of the 

medium (1 – for air , 2 – for magnetizable fluid). 
2a a a  

n 


the normal to the free surface, which is directed into the medium at index 2. 
Quantities entering into (1) – (4) mean: 

V 


velocity,   density, 0p  mechanical pressure, M magnetization, 

magnetostrictive pressure, ( )   H 


magnetic field strength, S  entropy, 

 temperature, T     the surface tension coefficient. 
1.1. Generalization of the integral of Cauchy–Lagrange to the case of 
accounting in magnetizable fluid magnetocaloric effect. We assume that the 
motion of the fluid emerges from dormancy. The system of equations for our 
problem has two integrals. 

First, for the most general law of the magnetization, taking into account the 
magnetocaloric effect, the motion is not isothermal but adiabatic, so that in each 
region: 
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where is a volume heat capacity. Vc

This integral allows to determine the temperature as a function of magnetic 
field strength: 

 (i) (i) (i)T T , H ,  i 1, 2   

Therefore, the magnetization in each region will be a function of magnetic 
field strength: 
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is potential, so that if the motion occurs from rest the conditions of Lagrange’s 
theorem are satisfied and the resulting motion will be irrotational: 
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where φ is the velocity potential. It follows that the equation of motion admits 
the integral of the Lagrange–Cauchy: 
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1.2. Formulation of problem in terms of potentials. Note that in view of 
equation 
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the magnetic field strength can be represented as 
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where Ф is the magnetic field potential. 

Formulation of the problem in terms of potential of velocity and potential of 
the magnetic field strength: 

Δ 0                                                           (7) 

Δ
 



















,T,(M
div4




 
z = ζ(x, y, t): 

ndivg)(
2

dHM
~

M2 m
2
z

2
y

2
xt

2
n


  

 
(1) (1) (1) (2) (2) 2

t z x x y y z x x y y               
 

 yyxxt ФФФ 
 

0ФФ,  0ФФ zyyzxx  ζζ
 

|z|→∞:                      
2,1i,  H|;   0| )i(

z
)i(

z
)i(  




 
where µ is permeability. 

This formulation of the problem was used by I. E. Tarapov for investigation 
the problem of instability of the fluids interface in a stationary field [17]. We 
generalize this problem to the case of time-dependent magnetic field and take 
into account magnetocaloric effect. 

1.3. Linearization of the problem.  Denote   is a perturbation of the 
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Thus, we neglect quantities of the order . )(O 2
The linearized problem for the potentials φ and Ф  has the form (the tilde 

over the perturbed quantities is omitted): 
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The formulated problem allows to investigate the parametric instability of 
the free surface of magnetic fluid in the case of the nonlinear dependence of the 
magnetization on the field strength and temperature. 
2. Solution of the problem.  The solution of problem (8) is sought in the form: 
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where k is the wave number of the perturbations arising on the free surface. 
Thus, we neglect the influence of air on the fluid motion. 
The problem is reduced to the investigation of the equation for the amplitude 

of a perturbation of the free surface of a magnetizable fluid. 
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Attenuation of surface waves is taken into account by introducing into the 
equation dissipation coefficient in the form, obtained in [7]: 
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2.1. Study of the equation. Let θ is the angle of orientation of the magnetic field 
strength. Then: 
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The equation of oscillations of a dissipative system with one degree of 
freedom is reduced to: 
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In what follows we consider the case of a periodic function F(t) with period 
T. When γ = 0 from equation (14) we obtain the Mathieu–Hill’s equation: 
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If the function F(t) is piecewise–constant, then equation (15) is called the 
Meissner equation. 

Particular interest for applications is the case of harmonic excitation, 
corresponding to the instructions of the following relationships: 
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where  and h τω  amplitude and frequency of oscillation of the tangential 

component of magnetic field strength,  and nh nω  amplitude and frequency of 

oscillation of the normal component of magnetic field strength,  and ea e  

amplitude and frequency of oscillation of modulation of the gravitational 
acceleration. 
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Thus, for harmonic excitation the equation (15) is a Mathieu equation: 
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As follows from the above studies, the stability of the free surface of an ideal 
magnetizable fluid is described by Mathieu equation. It depends on two 
coefficients q and l, which fully determine the stability of motion.  

The plane of changes of q and l can be divided into regions corresponding to 
stable and unstable motions (Ince–Strutt diagram). 
3. The case of a constant magnetic field. In this case from the equation (10) 
follows known result [11, 17] about the stability of the surface in a stationary 
magnetic field. The equation for perturbations of the free surface of ideal 
magnetizable fluid has the form: 
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The condition for instability of the solutions of (19) (existence of real values 
of wave number k) consists in the following inequality: 
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Hence it follows that the instability of the free surface occurs if the vertical 
component of magnetic field strength  exceeds the critical value zH
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The most dangerous perturbations are those with the length of the wave 
vector 

R
g

k



         (22) 

Thus, when  
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the instability occurs, which is called the Rosensweig’s instability. In this case 
the horizontal component of the magnetic field strength  has a stabilizing 

effect on the surface. 
H

 

 
Fig.2. The dependence of the critical value of magnetic field strength  from 

the angle θ (orientation of the field) for different values of permeability: 
RH

2  

(solid line), 3  (dotted line), 4  (dashed line), 5  (dashed-dotted line). 

 
Using (12) the condition for instability (20) takes the following form: 

   223
2 2 2k 1k 1
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4 1

 
  

  
kg 0    

     (24) 

Fig.2 shows that with increasing a horizontal component of magnetic field 
strength, possible to move further threshold for the onset of Rosensweig’s 
instability. If the orientation of the magnetic field is such, that does not satisfy 
(24), then the instability does not appear. 
3.1. The case of combined impact of mechanical vibrations and a constant 

magnetic field. Let 
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 
e  . Then the equation 

for the perturbation of the free surface of an ideal magnetizable fluid reduces to 
Mathieu equation (18), which by substitution 2tt e  takes the form: 
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Let us analyze the influence of vibrations of the gravitational field on the 
stability of the free surface in a stationary magnetic field applied. 

We considered the magnetic fluid is water based with typical values of 
parameters: 

3

g
1,19

cm
  
  

 
density;  0,07 P    viscosity;

 









cm

dyn
 26  the surface 

tension coefficient. 
Fig.3 and Fig.4 show that when the vertical component of the magnetic field 

strength does not exceed the critical value , then on the free surface appear 

waves , the length of which depends on the amplitude and frequency of 
modulation of the gravitational acceleration. But when  Rosensweig’s 

instability occurs and length of the excited waves decreases sharply. 

RH

Rz HH 

 

 
Fig.3. The dependence of the wave 
number of perturbations arising on the 
free surface of a magnetic fluid on the 
magnitude of the vertical magnetic 
field strength for different values of 
the modulation frequency of the 
gravitational field. 

Fig.4. The dependence of the length of 
the excited waves on the magnitude of 
the vertical magnetic field strength for 
different values of the amplitude of 
gravitational modulation. 

 
As well as in [14], Fig.3 and Fig.4 show that possible to move further 

threshold for the onset of Rosensweig’s instability by using modulation of the 
gravitational acceleration. Make a conclusion, that when the frequency of 
modulation of the gravitational acceleration increases, the length of the excited 
waves on the free surface of a magnetic fluid decreases. And with the increasing 
of amplitude of the gravitational field, wavelength increases too. 

Fig.5 shows, that the higher the permeability of the liquid is, the faster the 
Rosensweig’s instability occurs. Therefore interesting is the case of the nonlinear 
dependence )H,T,(  . As well as in [15], Fig.6 demonstrates that the 
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tangential component of the magnetic field strength exerts a stabilizing effect on 
the free surface of the ferrofluid, which is subjected to vertical vibrations. 

 

 
Fig.5. The dependence of the length of 
excited waves on the magnitude of the 
vertical magnetic field strength for 
different values of permeability. 

Fig.6. The dependence of the length of 
excited waves on the magnitude of the 
magnetic field strength depending on 
magnetic field orientation. 

 
3.2. The case of non-stationary magnetic field. 
3.2.1. Model of an ideal paramagnetic medium. In this case, the equation for 
the amplitude of the perturbation of the free surface of a magnetizable fluid has 
the form (13). As a model of an ideal paramagnetic medium choose the 
ferrofluid, magnetization of wich can be described by the Langevin’s law of the 
magnetization: 

    ,  
Tk

mH
,  cthL,  L nmM

b

1        (26) 

where n – volume concentration of ferroparticles; m – magnetic moment of a 
single particle;  – the Boltzmann constant; bk

We define the magnetic field strength in such way, that it contains a constant 
and oscillating parts: 

,tcosH h,  
H

h
1HH 0h

0
0  


 








      (27) 

where h 0H    amplitude of parametric excitation 

Then the following parameters can be represented as: 
' '

0 0 0T T T ,  ,  '            

where the coefficients with primes denote perturbations of the corresponding 
quantities. 

From the integral of adiabaticity (5): 
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find the connection between the perturbations of temperature and magnetic field 
strength: 
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For the model of an ideal paramagnetic medium magnetocaloric effect is 
insignificant. From the expression (21) we get: 
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where  fluid temperature in the absence of a magnetic field. 00T 
For typical parameters of water-based ferrofluid, even with a significant 

increase of the magnetic field strength, the fluid temperature varies very little. 
If the magnetic field strength is given in the form (27), equation (13) reduces 

to the Mathieu equation (25) with coefficients: 
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Fig.9 shows that when the vertical component of the magnetic field strength 

does not exceed the critical value , then on the free surface appear waves , 

the length of which depends on the amplitude and frequency of oscillating part of 
magnetic field. But when  Rosensweig’s instability occurs and length 

of the excited waves decreases sharply. Fig.9 shows, that by using an oscillating 
magnetic field possible to move the threshold for the onset of Rosensweig’s 
instability. 

RH

Rz HH 

 

 
Fig.7. The dependence of the length of 
the excited waves on the magnitude of 
magnetic field strength at different 
orientations of the magnetic field 
relative to the free surface of the 
ferrofluid. 

Fig.8. The dependence of the length of 
the excited waves on the orientation of 
the magnetic field for different values 
of the Langevin’s parameter. 
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Fig.9. The dependence of the wave number of perturbations that appear on the 
free surface of a magnetic fluid on the magnitude of the vertical component of 
magnetic field strength at different values of the frequency of oscillating part of 
magnetic field. 
 
3.2.2. Model of a nonideal paramagnetic medium. Let us consider the 
following law of the magnetization: 

 0TTĸM          (31) 

 
where ĸ is a pyromagnetic coefficient. We define the temperature in such way, 
that it contains a constant and oscillating parts: 

,tcosT T,   TTT cT
''

c       (32) 

 
where cT T   is the amplitude of parametric excitation. 

From the integral of adiabaticity (5) we find the connection between the 
perturbations of temperature and magnetic field strength: 

h
c

kT
T

v

c'          (33) 

 
As a result of temperature fluctuations, oscillations of magnetic field 

strength will occur and we get the case of parametric excitation of waves, which 
is observed in the previous section. 
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If the temperature is given in the form (32), equation (13) reduces to the 
Mathieu equation (25) with coefficients: 
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Thus, we can see the possibility of excitation of parametric instability of the 

free surface of a magnetizable fluid as a result of harmonic perturbation of its 
temperature due to the magnetocaloric effect, which becomes important at phase 
transitions (at the Curie temperature or at structuring of the magnetic fluid). 
4. Conclusions. In this paper we obtained an equation for the amplitude of the 
perturbation of free surface of nonlinear magnetizable fluid for multifrequency 
parametric excitation (modulation of the gravitational acceleration, different 
frequencies of the normal and tangential to the equilibrium surface components 
of the magnetic field strength, temperature fluctuations). 

The dependence of the lengths of the excited waves from the angle of the 
magnetic field orientation at various values of field strength and frequency of 
magnetic field perturbations is discussed for the first time. It is shown the 
principle possibility of excitation of parametric instability of the free surface of a 
magnetizable liquid as a result of harmonic perturbation of the temperature for a 
nonideal paramagnet due to the magnetocaloric effect. 
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